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: Nonalcoholic fatty liver disease (NAFLD) is defined by a

non-alcoholic nature in the presence of fatty liver, and is
currently the most common liver disease with increasing
importance globally (2300 million individuals worldwide).
The 3 major causes of NAFLD-related mortality include
cardiovascular disease, all-cause malignancy, and liver-
related death. Currently, diet and exercise are the
mainstay treatment for the majority of patients with NAFLD
and no specific medication for NAFLD is available. Several



clinical studies show a profound gender dimorphism in liver
diseases. In general, men are 2-fold more likely to die
from chronic liver disease and cirrhosis than are women.
Interestingly, NAFLD is twice as common in postmenopausal
women as 1in premenopausal women. Substantially,
interactions between sex hormones and adipose distribution
may explain the differences in the sex-specific liver
diseases. However, the precise therapy to probe the gender
dimorphism in NAFLD remained unidentified.

Secretory proteins derived from adipose tissue are
collectively called adipokines. Ectopic fat accumulation,
including visceral obesity and fatty liver, can be
considered a consequence of adipose tissue dysfunction and
results in altered adipokine levels. Increasing evidence
indicates that adipkines regulate steatosis and
inflammation in NAFLD. The pattern of adipokine alterations
are distinct between the men and women. Adiponectin, a 30-
kDa adipokine, is highly expressed in adipocytes and is
also expressed in hepatocytes. Adiponectin and its
receptors might protect hepatocytes from triglyceride
accumulation by increasing /S-oxidation, decreasing the de
novo synthesis of fatty acids, and promoting the uptake and
inhibiting the production of glucose in the liver. Thus,
hepatitis steatosis is usually associated with low levels
of adiponectin. Some animal studies had showed the
beneficial effect of adiponectin in protecting obesity-
related NAFLD. In human studies, adiponectin had been
documented as biomarkers for NAFLD, nonalcoholic
steatohepatitis, fibrosis, and insulin resistance. Higher
adiponectin levels are usually noted in females than age-
matched males.

Taken together, targeting the adiponectin-associated
pathway has the potentiality to dissect the gender-
dimorphism basis in NAFLD. By using conditional transgenic
mice that over-express the hepatitis C virus (HCV) core in
the liver, we had developed three transgenic mouse lines
with core expression under the control of the tetracycline
transactivator, those mice exhibited non-obese NAFLD. While
well-established commercialized db/db mutant mice may serve
as a suitable animal model of obese NAFLD. Thus, based on
the results our previous studies investigating the roles of
adiponectin in mice with hepatic steatosis, 1n human with
NAFLD and chronic HCV infection; and surveying the
adipokine and metabolic profiles in chronic liver diseases,
the present proposal is designed to dissect the impact of
gender on NAFLD by conducting a prospective case-control
cohort of NAFLD, with 3-year follow-up of hepatic and
extra-hepatic manifestations, stratified by the



menstruation period and the presence of menopause in women,
and focused on the adiponectin-associated pathway. In
parallel, the associated basis will be probed by using the
aforementioned mice with equivalent phenotypes for human
NAFLD. The current proposal holds promise to provide
therapeutic interventions targeting crucial gender factors
to control NAFLD-associated complications in Taiwan.

# < B 43 © NAFLD; gender dimorphism; adiponectin, HCV core transgenic
mice; db/db mutant mice
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Background

Nonalcoholic fatty liver disease (NAFLD) is defined by a non-alcoholic nature in the presence of fatty liver,
a reversible condition wherein triglyceride fat accumulates in more than 5% of the hepatocytes [1]. The
prevalence of NAFLD is increasing as a result of increasingly sedentary lifestyles, globalization of the
Western diet, and improving food supplies in previously famine-stricken areas [2]. According to World Health
Organization estimates, approximately 2300 million individuals likely have NAFLD worldwide, while 500
million are living with chronic hepatitis B or C [3]. The estimated local prevalence of NAFLD is up to 66.5%
in Taiwan [4-6]. Given that the overwhelming estimated prevalence rate of NAFLD, the presence of effective
nucleot(s)ide analogues and vaccines for treating and preventing hepatitis B virus infection [7], and the potent
direct-acting anti-viral agents for eliminating hepatitis C virus infection [8], NAFLD is currently the most
common liver disease with increasing importance globally [9]. The term NAFLD covers a pathologic
spectrum from lipid accumulation alone (simple steatosis) to steatosis with associated inflammation and
fibrosis [ie. nonalcoholic steatohepatitis (NASH)]. The three major causes of NAFLD-related mortality
include cardiovascular disease, all-cause malignancy, and liver-related death [10]. NASH can progress to
cirrhosis and potentially to hepatocellular carcinoma [11], however, most patients with NAFLD outlive their
liver disease and are more likely to develop fatal complications from cardiovascular disease or malignancy
[11]. Currently, diet and exercise are the mainstay treatment for the majority of patients with NAFLD and no
specific medication target NAFLD is available [9].

Several clinical studies show a profound gender dimorphism in liver diseases as women more commonly
present with acute liver failure, autoimmune hepatitis, benign liver lesions, primary biliary cirrhosis, and
toxin-mediated hepatotoxicity, but less commonly have malignant liver tumors, primary sclerosing cholangitis,
viral hepatitis, liver transplant and hepatitis C virus (HCV)-associated decompensated cirrhosis than men do.
In general, men are 2-fold more likely to die from chronic liver disease and cirrhosis than are women [12-14].
Interestingly, NAFLD is twice as common in postmenopausal women as in premenopausal women whose
estrogen levels are higher than postmenopausal women, which suggests the protective role of estrogens in
NAFLD [15]. Nonalcoholic steatohepatitis (NASH) patients who are candidates for liver transplantation seem
to be generally older, female, and Asian; are most often affected by diabetes, hypertension, obesity, and
cardiac disease [16]. Substantially, interactions between sex hormones, adipose distribution and sex
hormone-binding globulin may explain the differences in the sex-specific liver diseases. However, the precise
therapy to probe the gender dimorphism in NAFLD remained unidentified.

Secretory proteins derived from adipose tissue are collectively called adipokines [17]. Ectopic fat
accumulation, including visceral obesity and fatty liver, can be considered a consequence of adipose tissue
dysfunction and results in altered adipokine levels [18]. Increasing evidence indicates that adipkines regulate
steatosis and inflammation in NAFLD [19-20]. Therefore, characterising the adipokine alterations in NAFLD
may help to evaluate the prognosis of NAFLD. Moreover, the pattern of adipokine alterations are distinct
between the men and women with NAFLD [20]. The sexual dimorphism of baseline adipokine has been
attributed to the direct effects of sex hormones on adipocytokine secretion or to differences in the body fat
composition of normal individuals [21]. Adiponectin, a 30-kDa adipokine, is highly expressed in adipocytes

and is also expressed in hepatocytes [22]. However, increased visceral adipose tissue stores reduce the
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abundance of circulating adiponectin [20]. Several insulin resistance (IR)-associated hormones such as insulin
and catecholamines might dysregulate adiponectin expression [23]. Post-translational adiponectin
modifications result in the secretion of oligomers of 90-kDa trimers, which are found in the circulation as low
molecular weight (LMW) and high molecular weight (HMW) adiponectins. HMW adiponectin is more
closely correlated with insulin sensitivity than LMW adiponectin [24]. Adiponectin mediates its effects on
target cells via at least two adiponectin receptors, adiponectin receptor I (AdipoR1) and receptor II (AdipoR2).
AdipoR1 is abundantly expressed in skeletal muscle and the liver, whereas AdipoR2 is primarily expressed in
the liver [25]. Adiponectin and its receptors might protect hepatocytes from triglyceride accumulation by
increasing -oxidation, decreasing the de novo synthesis of fatty acids, and promoting the uptake and
inhibiting the production of glucose in the liver [26-27]. Thus, hepatitis steatosis is usually associated with
low levels of adiponectin [27]. In addition, statin-inducted hypolipidemia is associated with
hyperadiponectinemia [28]. Moreover, adiponectin has anti-inflammatory, anti-atherosclerotic and
anti-apoptotic properties [29]. Paradoxically, circulating adiponectin has been positively correlated with heart
failure, coronary artery disease and all-cause mortality [30-31]. Some animal studies had showed the
beneficial effect of adiponectin in protecting obesity-related NAFLD [32]. In human studies, adiponectin had
been documented as biomarkers for NAFLD [33], NASH [34-36], fibrosis [37], insulin resistance [38-39] and
glucose metabolism [40]. Species and gender differences in plasma levels, tissue or cell distribution and
hormonal regulation have been reported for adiponectin [41]. Higher adiponectin levels are usually noted in
females than age-matched males [20]. For women, the lowest levels of adiponectin are observed during the
postovulatory period [42]. Plasma adiponectin levels correlated negatively with body fat percentage in older
males but not in older females [43].

Taken together, targeting the adiponectin-associated pathway has the potentiality to dissect the basis of
gender-dimorphism in NAFLD and provide the tailored follow-up and treatment protocols for NAFLD. By
using conditional transgenic mice that over-express the hepatitis C virus (HCV) core in the liver, we had
developed 3 transgenic mouse lines with low, intermediate or high core expression under the control of the
tetracycline transactivator (tTA) [44-50], those mice exhibited non-obese NAFLD. While well-established
commercialized db/db mutant mice [51] may serve as a suitable animal model of obese NAFLD. Thus, based
on the results our previous studies investigating the roles of adiponectin in non-obese mice with hepatic
steatosis [50], in human with NAFLD [20] and in human with chronic HCV infection [52-53] (which is the
main cause for NAFLD [54]); and surveying the adipokine [55-57] and metabolic profiles [58-62] in chronic
liver diseases, the present proposal is designed to dissect the impact of gender on NAFLD in Taiwan by
conducting a prospective case-control cohort of NAFLD, with 3-year follow-up of hepatic and extra-hepatic
manifestations, stratified by the menstruation period and the presence of menopause in women, and focused
on the adiponectin-associated pathway. In parallel, the associated basis of will be probed by using the HCV
core transgenic mice and db/db mice with equivalent phenotypes for human NAFLD. The current proposal
holds promise to provide therapeutic interventions targeting crucial gender factors to control
NAFLD-associated complications in Taiwan.

The specific aims of the current proposal are as follows:
1. Enroll patients with normal liver and NAFLD to systematically determine the associated
gender-associated pathophysiology and prognosis.
Maintain and characterize the mice with NAFLD.
3. Dissect the basis for the various phenotypes of NAFLD in mice.
2



4.  Survey adiponectin-specific sex hormone, adipokine, metabolic and liver profiles for the prognosis of
NAFLD in humans with sex, menstruation period and presence of menopause stratification.

5. Elucidate the potential adiponectin-specific target of the associated pathways in the mice with various
phenotypes equivalent to human NAFLD.
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Based on this grant, we had accomplished several papers, as follows:
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1. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic

Alteration and Disease Progression

Ming-Ling Chang *, Zinger Yang, Sien-Sing Yang

Adipose tissue is a highly dynamic endocrine tissue and constitutes a central node in the
interorgan crosstalk network through adipokines, which cause pleiotropic effects, including
the modulation of angiogenesis, metabolism, and inflammation. Specifically, digestive
cancers grow anatomically near adipose tissue. During their interaction with cancer cells,
adipocytes are reprogrammed into cancer-associated adipocytes and secrete adipokines to
affect tumor cells. Moreover, the liver is the central metabolic hub. Adipose tissue and the
liver cooperatively regulate whole-body energy homeostasis via adipokines. Obesity, the
excessive accumulation of adipose tissue due to hyperplasia and hypertrophy, is currently
considered a global epidemic and is related to low-grade systemic inflammation characterized
by altered adipokine regulation. Obesity-related digestive diseases, including
gastroesophageal reflux disease, Barrett's esophagus, esophageal cancer, colon polyps and
cancer, non-alcoholic fatty liver disease, viral hepatitis-related diseases, cholelithiasis,
gallbladder cancer, cholangiocarcinoma, pancreatic cancer, and diabetes, might cause specific
alterations in adipokine profiles. These patterns and associated bases potentially contribute to
the identification of prognostic biomarkers and therapeutic approaches for the associated
digestive diseases. This review highlights important findings about altered adipokine profiles
relevant to digestive diseases, including hepatic, pancreatic, gastrointestinal, and biliary tract

diseases, with a perspective on clinical implications and mechanistic explorations.



2. Critical role of triglycerides for adiponectin levels in hepatitis C: a joint study of human and
HCYV core transgenic mice

Ming-Ling Chang*, Jing-Hong Hu, Li-Heng Pao, Ming-Shyan Lin, Chia-Jung Kuo, Shiang-Chi Chen,
Chun-Ming Fan, Ming-Yu Chang, Rong-Nan Chien

Background: Both hepatitis C virus (HCV) infection and adiponectin are critically involved
in metabolism. The reversal and associations of altering adiponectin levels after sustained
virological responses (SVRs) following direct-acting antivirals (DAA) in HCV-infected patients
remained elusive.

Methods: A joint study was conducted in a prospective cohort of 427 HCV-infected patients
and a line of HCV core transgenic mice.

Results: Of 427, 358 had completed a course of DAA therapy and 353 had SVRs. At
baseline, male sex (95% CI B: - 1.44 to - 0.417), estimated glomerular filtration rate (eGFR) (-
0.025 to - 0.008), triglycerides (- 0.015 to - 0.005), and fibrosis-4 levels (0.08-0.297) were
associated with adiponectin levels; BMI (0.029-0.327) and triglycerides levels (0.01-0.03) were
associated with homeostatic model assessment for insulin resistance (HOMA-IR) in HCV-infected
patients. At 24-week post-therapy, in SVR patients, male sex (- 1.89 to - 0.5) and eGFR (- 0.02 to -
0.001) levels were associated with adiponectin levels, levels of BMI (0.094-0.335) and alanine
transaminase (0.018-0.078) were associated with HOMA-IR; compared with baseline levels,
adiponectin levels decreased (6.53 £ 2.77 vs. 5.45 + 2.56 pg/mL, p < 0.001). In 12-month-old
HCYV core transgenic mice with hepatic steatosis, triglyceride levels (0.021-0.111) were associated
with adiponectin levels, and hepatic adipopnectin expression was comparable with that of control
mice.

Conclusions: Triglycerides and hepatic fibrosis are associated with HCV-specific alteration
of adiponectin levels, and adiponectin may affect insulin sensitivity through triglycerides during
HCV infection. In DAA-treated patients, after SVR, adiponectin levels decreased and the linking
function of triglycerides between adiponectin and insulin sensitivity vanished. Moreover, HCV

core with hepatic steatosis might affect extrahepatic adiponectin expression through triglycerides.



3. Fatty Pancreas-Centered Metabolic Basis of Pancreatic Adenocarcinoma: From
Obesity, Diabetes and Pancreatitis to Oncogenesis

Ming-Ling Chang*

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer, and it is
currently the third most common cause of cancer death in the U.S.A. Progress in the fight
against PDAC has been hampered by an inability to detect it early in the overwhelming
majority of patients, and also by the reduced oxygen levels and nutrient perfusion caused by
new matrix formation through the activation of stromal cells in the context of desmoplasia.
One harbinger of PDAC is excess intrapancreatic fat deposition, namely, fatty pancreas,
which specifically affects the tumor macro- and microenvironment in the organ. Over half of
PDAC patients have diabetes mellitus (DM) at the time of diagnosis, and fatty pancreas is
associated with subsequent DM development. Moreover, there is a strong association
between fatty pancreas and fatty liver through obesity, and a higher intrapancreatic fat
percentage has been noted in acute pancreatitis patients with DM than in those without DM.
All these findings suggest that the link between fatty pancreas and PDAC might occur
through metabolic alterations, either DM-related or non-DM-related. Based on clinical, in
vivo and in vitro evidence, the current review highlights the etiologies of fatty pancreas
(including fatty infiltration and replacement) and the fatty pancreas-associated metabolic
alterations involved in oncogenesis to provide crucial targets to prevent, detect, and/or

effectively treat PDAC.
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