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* Numerous empirical studies have reported that males and

females perform equally well in mathematical achievement.
However, still to date, very limited is understood about
the neural mechanisms of whether and how men and women
demonstrate differences when solving mathematical problems.
The present study aimed to tackle this issue by
manipulating arithmetic problem complexity and
investigating functional significance using fMRI in young
adults. Participants were instructed to complete two runs
of simple calculation tasks containing either large or
small problem sizes. Behavioral results suggested that the
performance did not differ between females and males.
Neuroimaging data revealed that sex-related patterns of
problem size effect were found in the conventional
arithmetic circuits, including the left middle frontal
gyrus (MFG), left intraparietal (IPS), and insula, with
females demonstrating substantial brain responses of
problem size effect compared to males. Moreover, the
machine-learning method over the brain signal levels within
the fronto-parietal circuits is discriminable of the
sex/gender of human adults. These results demonstrated
sex/gender effects in the activating patterns varying as a
function of the distinct math problem complexity, even in a
simple calculation task. Accordingly, our findings
suggested that females and males use two complementary
brain resources to achieve equivalently successful
performance levels and highlight the pivotal role of
neuroimaging facilities in uncovering neural mechanisms
that may not be behaviorally salient.
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Abstract

Numerous empirical studies have reported that males and females perform equally well in
mathematical achievement. However, still to date, very limited is understood about the neural
mechanisms of whether and how men and women demonstrate differences when solving
mathematical problems. The present study aimed to tackle this issue by manipulating arithmetic
problem complexity and investigating functional significance using fMRI in young adults.
Participants were instructed to complete two runs of simple calculation tasks containing either
large or small problem sizes. Behavioral results suggested that the performance did not differ
between females and males. Neuroimaging data revealed that sex-related patterns of problem
size effect were found in the conventional arithmetic circuits, including the left middle frontal
gyrus (MFQ), left intraparietal (IPS), and insula, with females demonstrating substantial brain
responses of problem size effect compared to males. Moreover, the machine-learning method
over the brain signal levels within the fronto-parietal circuits is discriminable of the sex/gender
of human adults. These results demonstrated sex/gender effects in the activating patterns
varying as a function of the distinct math problem complexity, even in a simple calculation
task. Accordingly, our findings suggested that females and males use two complementary brain
resources to achieve equivalently successful performance levels and highlight the pivotal role
of neuroimaging facilities in uncovering neural mechanisms that may not be behaviorally

salient.

Keywords: biological sex, mental arithmetic, mathematical cognition, fMRI, parietal cortex,

prefrontal cortex



(This report has been submitted to Journal of Neuroscience Research, and the revised version is

under review)

1. Introduction

Over the past decades, empirical studies have reached the consensus that males and females
perform equally well in arithmetic learning and mathematical achievement (Hyde, 2014).
However, still to date, women showed less positive attitudes, lower motivation, and self-
confidence toward mathematical learning than males (Rodriguez et al., 2020), and eventually
remained minorities in personal choice of math-associated fields. This sex bias can deteriorate
the male-math stereotype and continue to cause women’s avoidance of mathematical learning.
In searching for fundamental differences in the mechanisms of mathematical problem solving
between males and females, numerous behavioral studies have extensively compared
performance discrepancies between male and female students. However, understanding whether
and how each sex/gender demonstrates specialty in the neural underpinnings is still very limited.
In this study, we systematically investigate the distinctiveness of brain activations underlying
mathematical problem solutions of each sex using the fMRI techniques. Given that it is difficult
to discriminate whether differences between males and females are wired in the brain by nature
or are learned from experience and environment, we adopted the term “sex/gender differences”
(Chang et al., 2022; Jordan-Young & Rumiati, 2012; Springer et al., 2012) to capture both the
biological mechanisms and the psychosocial expression of maleness and feminineness
throughout the manuscript. By uncovering these issues, we seek to achieve more genuine
sex/difference equality with more clarified investigations of the learning mechanism of
individuals.

Numerous behavioral studies have extensively investigated sex/gender differences in school
mathematical performance in recent decades (cf. Chang et al., 2022). Using large-scale meta-
analytical analyses approach over millions of global participants, multiple studies have shown
that sex/gender effects in mathematical performance, regardless of the contents, are subtle (Hyde
etal., 1990; Hyde et al., 2008; Lindberg et al., 2010). Other studies have reported that sex/gender
differences in mathematical performance, though negligible, declined with time. Studies and
assessments administered and compared male and female students continued to show reduction
in differences between 1973 and 2019 (Hyde et al., 1990; Mullis et al., 2020). Despite that some
studies reported sex/gender differences at the individual level rather than reflecting societal group
norms, for example, in the variance of performance (Baye & Monseur, 2016; Benbow et al., 2000;
Lindberg et al., 2010) and specific problem types (Lindberg et al., 2010), the effects remained
small and variable. Together these results have led researchers to agree that girls and boys reach
parity in mathematical performance. Yet, understanding the underlying neural mechanisms of
sex/gender effect in mathematical problem solving is still limited, as it not only captures
contemporary differences in brain and behavior but also provides exclusive brain bases

knowledge that is unseen in behavioral outcomes alone.



Neuroimaging studies have consistently identified distributed neural circuits activated
during mathematical performance. As the vast majority of neuroimaging studies addressing math
problem solving had emphasized calculation skills, here we focus on arithmetic problem solving.
These neural circuits associated with arithmetic problem solution primarily encompass several
nodes within the fronto-insular-parietal network, including anterior insula (Al), dorsal anterior
cingulate cortex (dACC), dorsal posterior parietal cortex (PPC), and dorsolateral prefrontal
cortex (DLPFC) (Arsalidou & Taylor, 2011; Chang et al., 2016; Houde et al., 2010; Menon et al.,
2014; Ng et al., 2021). Within this set of networks, the IPS within the PPC is considered to play
the most crucial role in representing and manipulating quantitative information (Ansari, 2008;
Cohen Kadosh et al., 2008; Dehaene et al., 2003). Outside of the PPC, the canonical neural
circuits include Al, dACC, and DLPFC (Cai et al., 2016; Chang et al., 2019; Levy & Wagner,
2011; Ngetal., 2021). The Al coupling with dACC forms the major components of the salience
network (SN) (Menon, 2015b; Seeley et al., 2007) that is associated with subjective salience of
external stimuli and in contributions to complex cognitive processes, including central executive
function and affective processing. DLPFC, together with PPC, comprise the major nodes of the
central executive network (CEN), engaged in information retention and manipulation during
working memory, manipulation of quantities over epochs, construction of problem solutions, and
decision making (Chang et al., 2019; Menon, 2015a; Miller & Cohen, 2001; Petrides, 2005;
Rottschy et al., 2012). In a recent fMRI study, Chang and colleagues demonstrated that brain
response profiles associated with judging sentences that required one-step arithmetic operations
were associated with greater engagement and stronger within-network connectivity in this set of
fronto-insular-parietal circuits relative to judgment over parallel narratives without any
numerical information (Chang et al., 2019). Furthermore, the fronto-insular-parietal network has
also been identified when assessing arithmetic problem-solving skills in the developmental
progression across critical learning stages from early childhood to adulthood (Arsalidou &
Taylor, 2011; Chang et al., 2019; Chang et al., 2016). Collectively, these results supported that
the interconnected network jointly engages and synchronizes to form the network contributing
to the core neural substrates of numerical problem-solving skills, ranging from simple number
comparisons to complex arithmetic and problems that require mathematical reasoning and across
the essential learning stage (Cho et al., 2012; Rosenberg-Lee et al., 2015; Rosenberg-Lee et al.,
2011; Supekar & Menon, 2012). Yet, it remained unknown whether males and females showed
distinctiveness in the set of the fronto-insular-parietal nodes, particularly during mathematical
problem solving.

Numerical properties modulate the canonical arithmetic circuits, for example, problem
complexity and problem size (Chang et al., 2016; Chang et al., 2015; De Smedt et al., 2011;
Metcalfe et al., 2013; Stanescu-Cosson et al., 2000). The problem size effect refers to the problem
complexity cost such that arithmetic problems with larger problem operands (e.g. 7+9; 6x8) were
responded less accurately and slower than problems with smaller operands (e.g. 2+3; 2x4)
(Campbell & Xue, 2001; De Smedt et al., 2011; Stanescu-Cosson et al., 2000). The effect of



problem size likely reflects the specificity of strategy usage in distinct problem types. In
particular, small problems are usually solved by fast-retrieving arithmetic knowledge facts, while
large problems are solved by reasoning through the process of multistep calculations (Barrouillet
et al., 2008; Campbell & Xue, 2001; De Smedt et al., 2011). Aside from the behavior findings,
neural correlates of the problem size effect are also documented (De Smedt et al., 2011; Stanescu-
Cosson et al., 2000). Stanescu-Cosson and colleagues demonstrated that large arithmetic
problems engage more activations over the DLPFC and bilateral IPS. In contrast, small problems
inversely engage stronger angular gyrus than large problems (Stanescu-Cosson et al., 2000).
Several other studies have also reported similar results with school-age children (Chang et al.,
2016; Chang et al., 2015), with the exception that in children, it is hippocampus rather than the
angular gyrus (AG) shows stronger activations for small problems (Cho et al., 2012; De Smedt
et al., 2011). In sum, the results of these studies provided additional biological support for the
involvement of procedure-based computation and working memory allocation when solving
complex problems with larger sizes, as well as retrieval of mathematical facts when solving
simple problems. Given that problem size effect is consistent and reliable across studies to probe
arithmetic-associated brain responses, it is likely suited to address important questions of
differences in the neural mechanisms between sexes/genders.

Even until today, only four studies have used fMRI techniques to directly compare brain
processing of males and females during arithmetic problem solving. Wang et al. (2007) compared
brain responses of males and females during a high-pressured serial subtraction of 13 from a 4-
digit number and a low-pressure backward counting from 1000. They found that the right PFC
was more active in males than in females while performing the stressed task. Subsequently, Keller
and Menon (2009) compared sex/gender differences in the brain activations while participants
calculated 3-operand addition and subtraction problems. The results suggested that males
engaged in a greater level of IPS, AG, lingual and parahippocampal gyri, whereas no regions
showed greater functional activation in females than males. Paradoxically, a reverse pattern of
sex/gender differences was found in the voxel-based morphometry with the subset of the samples.
Females showed greater volume and density than males in the regions that were activated by the
arithmetic task. Pletzer (2016) examined the brain response patterns of young adults as they
performed subtraction and multiplication tasks. In that study, participants showed stronger IPS
activations for subtraction as well as greater AG activations for multiplication tasks. Interestingly,
this operation effect was only observed in males but not in females, suggesting that females
showed less differentiation between numerical problems of distinct nature. In a more recent study,
Kersey and colleagues quantified brain responses while school-age children watched education
videos depicting mathematics. To obtain the index of neural similarity, intersubject correlations
were computed across all children's brain responses. According to the authors, intrasex and
intersex neural similarity did not present differences in processing between boys and girls,
including bilateral IPS, bilateral inferior frontal gyrus (IFG), and anterior cingulate cortex

(Kersey et al., 2019). These results led the authors to conclude that there is much more similarity



than differences between male and female brains in nature. Taken together, these previous
attempts present a contradictory picture of neural dissociation between males and females
associated with mathematical cognition. All these previous studies had varied in task designs,
analysis strategies, and the sampling ages, making drawing specific conclusions about the
sex/gender differences in mathematical cognition challenging. Nevertheless, it is worth noting
that although functional responses differed between males and females, no compelling
differences in behavioral measures were observed in the studies mentioned above.

In the current study, we attempt to systematically examine sex effect on brain response
profiles during mathematical problem solution by collecting fMRI data from adults who were
proficient in general arithmetic problem solving skills. In order to linearly control the task
complexity with the corresponding problem solving strategies, we directly manipulate problem
size as large and small problems since the arithmetic associated neural circuit, i.e. the fronto-
insular-parietal network, has been consistently identified as a function of the problem size as
reviewed above. We also applied a machine learning logistic regression model to assess whether
the brain responses of the arithmetic task can discriminate between males and females. On the
basis of existing mathematics-related assessment reports, there was a very subtle sex disparity
between sexes. Therefore, we predicted that behavior performances would not show differences
in this simple task. As previous literature reported that males and females can adopt distinct
problem solving strategies, with boys tend to solve mathematical problems using fast rote-fact
retrieving, estimation and insight strategies, whereas females tend to adopt more concrete,
algorithmic calculation (Bailey et al., 2012; Gallagher et al., 2000; Zhu, 2007). We hypothesized
that sex/gender differences will be observed in the wired mathematical learning-associated brain
circuits. More specifically, we expected that females would show greater fronto-parietal
engagement during the vital mathematical task giving their problem solving strategies, and

machine learning methods over the fronto-parietal circuits would predict the sex/gender labels.

2. Method
2.1. Participants

Seventy-five adults (38 females and 37 males) were recruited from local educational
institutions in Taipei city, Taiwan. Among the participating adults, four had excessive head
movements (for the movement exclusion criteria, see the fMRI data preprocessing section below),
resulting in the final sample of seventy-one participants (36 females; age range 18.93 to 29.09
years, M = 23.04, SE = 0.28).This sample size is adequate for the suggested number of at least
5 to 9 events per independent variable (EPV) by Vittinghoff and McCulloch (2007) for further
logistic regression analysis. Mean ages did not differ between females (M = 22.60, SE = 0.37)
and males (M = 23.49, SE = 0.41) (¢¢9) = 1.62, p = 0.11, 95% CI = [-1.99, 0.21], d = 0.38). All
participants were right-handed with no reported history of psychiatric or neurological disorders
and had normal or corrected-to-normal vision. All participants had comparable educational status

(undergraduate or graduate students). 56 of the participants (28 females) completed an arithmetic



assessment prior to the fMRI scan using an arithmetic test similar to the French Kit (Ekstrom,
1976) and our previous study (Chang et al., 2018). During the test, participants were instructed
to solve a mixture of single- and two-digit addition and subtraction problems as quickly and
accurately as possible. Mean accuracy of this test did not differ between females (M = 0.730, SE
=0.022) and males (M = 0.755, SE = 0.027) (#s4) = 0.703, p = 0.485, 95% CI = [-0.094 0.045],
d = 0.188). Informed written consent was obtained from each participant. All participants were
volunteers and were treated according to the Helsinki Declaration guidelines. All study protocols

were approved by the National Chengchi University Review Board.

2.2. Experimental design

All participants were instructed to complete two runs of 2-operand mathematical
verification tasks during fMRI scanning. The problems of this verification task consisted of
combinations of single-digit operands from 2 to 9, with the exclusion of tie problems (e.g., 5+5).
Within each run, the stimuli included 56 addition and subtraction problems. Problems consist of
two conditions: large- and small-sized problems. For addition, in the large problem condition,
the product of the two operands was larger than 25 (e.g., 8+7); in the small problem condition,
the product of the two operands was smaller than or equal to 25 (e.g., 5+2). For subtraction,
stimuli were inverses of addition problems. Each trial began with a ‘+’ sign as a fixation for 500
ms followed by the presentation of a problem for 3000 ms in the center. Next, the corresponded
answer to the problem was displayed for 1000 ms. During this period, participants were asked to
determine the correctness of the showing answer by pressing one of two keys based on their
answer; 50% of the trials were correct (e.g., ‘6 + 3 =9’), and the other 50% were incorrect (e.g.,
‘6 +3 =28’). The incorrect answers differed by + 1 or & 2 of the correct ones. The screen was then
blank for 750 ms. Afterward, the screen remained blank for a jittered inter-trial interval between
2 and 5 s. Each of the two runs lasted approximately 8 min. The presenting orders of the trial
according to the problem size were randomized, and the performance sequence of the two runs

was counterbalanced between the participants.

2.3. fMRI data acquisition

Neuroimaging data was acquired using a Siemens MAGNETOM Skyra 3 T scanner at
National Chengchi University in Taipei City, Taiwan. Head movement was minimized during
the scan using cushions placed around the head of each participant. T2* weighted echo-planar
sequences were employed with the following parameters: TR =2 s, TE = 30 ms, flip angle =
90°, 36 ascending axial slices with slice thickness =4mm, field of view = 220 x 220 mm?2,
matrix size = 64 x 64, providing an in-plane spatial resolution of 3.4 mm. In the same scan
session, high-resolution T1-weighted MRI sequences were acquired for each participant to aid
localization of functional data, with the following parameters: TR = 3500 ms; TE = 3.37 ms; TI
= 1100ms, flip angle = 7°, field of view =256 x 256 mm2, matrix size = 256 x 256, resulting in

resolution of 1 X1 x1 mm3, number of excitations = 1, 192 slices in axial plane.



2.4. fMRI data preprocessing
SPM12 (http://www.fil.io.ucl.ac.hk/spm) was used for preprocessing of functional MRI

data. All functional images were corrected prior to statistical analysis for errors in slice timing,
realigned to the first image of each run to correct for head motion, coregistered to each of the
individual participant’s structural scans, normalized to standard stereotaxic space (based on the
Montreal Neurologic Institute coordinate system), and smoothed with a 6 mm full-width half-
maximum Gaussian kernel to decrease spatial noise. Participants with movement more than 3
mm in translational directions and 3 degrees in rotational directions were excluded from further
analyses. The average movements of the final participants were 0.34 (SE = 0.01), 0.47 (SE =
0.03), and 0.95 (SE = 0.05) mm in the X, y, and z directions, with 0.84 (SE = 0.05), 0.34 (SE =
0.02), and 0.28 (SE = 0.01) degrees of roll, pitch, and yaw, respectively.

2.5. Individual and group-level analyses

Statistical analysis was performed on both individual and group-level data using the
general linear model (GLM) implemented in SPM12. Individual subject analyses were first
performed by applying GLM that modeled the correctly responded trials as regressors and
convolved with a canonical hemodynamic response function to model the expected BOLD
signal. Incorrectly responded trials, the epoch participants made responses, and the six motion
parameters generated in the SPM12 realignment procedure were included as regressors of no
interest. Voxel-wise t-maps for each effect of interest from individual level were entered into a
random-effects 2 (problem size) X 2 (sex) mixed-design ANOVA, with problem size as
within-subject factors and sex as between-subject factor. We investigated the main effects and
interactions at the brain level. Because F-tests do not test the direction of the effects, -contrasts
were calculated for visualization in the subsequent analyses to determine the direction of any
significant effects. All significant results were determined according to a voxel-wise height
threshold of p <.005 uncorrected, and a multiple comparison correction at a spatial-extent
threshold of FWE p < .05 after gray matter masking.

2.6. Logistic regression and cross-validation

Logistic regression analysis was implemented to estimate whether the brain response that
showed a problem size effect could predict sex/gender group labels. Because neural circuits
associated with arithmetic problems predominantly include fronto-insular-parietal regions
(Arsalidou & Taylor, 2011; Chang et al., 2019; De Smedt et al., 2011; Houde et al., 2010), we
conducted logistic regression and cross-validations within these circuits using ROI (region of
interests) approach. In order to avoid inflated correlations produced by deriving ROIs from the
same dataset (Vul et al., 2009), we defined ROIs using a meta-analysis based on the approach of
our previous work (Chang et al., 2019; Chang et al., 2018). Specifically, a Bayesian meta-analysis
of the reverse inference mask available in Neurosynth (Yarkoni et al., 2011) was conducted using
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the search term ‘arithmetic’, resulting a total of 96 studies generated. A false discovery rate (FDR)
adjusted p value of 0.01 was applied to produce the association test map. The coordinates with

peak z-scores with clusters exceeding 50 voxels on the association test map were identified using

the xjView toolbox (www.alivelearn.net/xjview), and selected for further analyses. The resulting
brain maps encompassed the left IPS (peak at [-28, -60, 44]), the right IPS [30, -64, 46], the left
insula [-22, 22, 2], the left MFG [-26, 10, 54], the left IFG [-50, 10, 26], and the left superior
frontal gyrus (SFG) [-4, 14, 54]. In subsequent logistic regression analyses, a 10-mm radius
sphere (515 voxels with voxel size = 4120 mm?®) centered on each of these six identified peak

coordinates was created using MarsBaR (http://marsbar.sourceforge.net/) as selected ROIs.

Estimated beta values of activation level differences between large and small problems extracted
from these ROIs were then entered into the following logistic regression model to classify
participants based on their sex/gender.

A multiple logistic regression model was built and verified using the forward stepwise
method based on the Akaike information criterion (AIC) (Akaike, 1974) selection and the
probability of the Wald statistic. The AIC measures the trade-off between the uncertainty in a
model and the number of predictor variables in the model. Lower AIC values imply better
prediction of sex/gender labels, as they explain the greatest amount of variation in the response
variable with the least amount of predictor variables. The forward stepwise logistic regression
starts with a null model, adds the most contributed variables one by one, and ends with a model
that picks the best variables for an optimal solution. In the current study, the beta value
differences between large and small problems generated from the 6 Neurosynth ROIs were
considered as predictive variables. The optimal subset of variables related to sex label
discrimination could be determined by utilizing the forward stepwise selection method.

Finally, the classification accuracy was evaluated using a stratified k-fold cross-validation
procedure. This evaluation procedure consists of three steps. In the first step, the samples were
randomly partitioned into a training set (70%) and a test set (30%), both sets contain
approximately the same percentage of samples of each target class (females and males
approximately 1/ 1) as the total number of participants (females: males = 36: 35). The test set
was held for later estimation of the generalizability of the model classifier. In the second step,
the training set was further shuffled and divided into k (k = 10) equal-sized folds. One fold was
used for performance validation and the remaining k-1 folds were combined into a sub-training
set for model fitting. Again, a similar proportion of samples (females and males) are included in
each set as in the total number of participants. After that, the above k-fold cross-validation
procedures were repeated ten times on the given sub-training dataset. We then obtained the
average classification accuracy of training set in the second step. In the last step, we estimated
the test set defined in the first step, computing the classification accuracy (proportion of all
participants’ sex correctly predicted), sensitivity, and specificity. The receiver-operating
characteristic (ROC) curve was constructed using the probability thresholds with corresponding

data points (sensitivity, 1 - specificity), and the area under the curve (AUC) was then calculated.
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The modeling and statistical analyses were implemented using R packages ‘caret’, and ‘MLeval’.

2.7. Voxel-based morphometry (VBM) analysis

Sex-related differences in brain anatomy were examined using VBM analysis. The CAT12
toolbox (CAT12; http://dbm.neuro.uni—jena.de/cat12) implemented in the SPM12 software was
used to process the T1-weighted images. Structural T1-weighted images of each participant
were first converted into the Neuroimaging Informatics Technology Initiative (NIFTI) format
through SPM12. The images were then pre-processed with the standard default procedure
recommended in the CAT12 manual. The preprocessing steps included skull stripping,
segmentation into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF),
followed by spatial normalization to the DARTEL template in the Montreal Neurological
Institute (MNI) space with 1.5 mm cubic resolution. The quality of the images was assessed
with the built-in image quality rating and manually visual check. Finally, images were
smoothed using a 6-mm full-width half-maximum (FWHM) isotropic Gaussian kernel. In
addition, the total intracranial volume (TIV), which is the sum of GM, WM, and CSF volumes

in the native space, was also estimated.

3. Results
3.1. Behavioral results

The mean accuracy and reaction time for each problem condition for each participant were
computed and analyzed using repeated-measures ANOVA with problem size (small, large) as
within-subject factors and sex (female, male) as a between-subjects factor. For the accuracy
(Figure 1A), as predicted, there was a significant main effect of problem size, showing that
participants performed more accurately on small size problems than large size problems (96.8%
vs. 95.6%, F(1,69) = 9.334, MSE = 0.005, p = 0.003, n2= 0.016). No differences between males
and females was observed when performing the arithmetic task (95.4% vs. 96.9%, F(1,69) =
1.931, MSE = 0.008, p = 0.169, #* = 0.024), nor did the interaction effect between sex and
problem size was significant (F(1,69) = 0.618, MSE < 0.001, p = 0.434, *=0.001) , indicating
females and males perform equally well on this current simple single-digit calculation task.

Regarding the reaction time analysis (Figure 1B), likewise, there were main effects of
problem size, showing that participants responded faster to small size problems than to large
size problems (640 ms vs. 650 ms, F(1,69) = 9.969, MSE = 3901, p = 0.002, #*= 0.002). No
difference was observed between males and females (637ms vs. 652ms, F(1,69) = 0.227, MSE
=7982, p=0.635, #>=0.003), nor did the interaction effect between sex and problem size was
significant (F(1,69) = 0.244, MSE = 96, p = 0.623, #>=0.001).
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Figurel. Accuracy (ACC) and Reaction times (RT) of the arithmetic task in females and males.
(A) Participants performed more accurately to small size problems than large size problems. No
significant difference between sexes was found, and sex and problem size did not interact
significantly. (B) Participants responded faster to small size problems than large size problems.
No significant difference between sexes was found, nor was the interaction effect between sex

and problem size significant.

3.2. Brain imaging results
3.2.1. Brain responses that showed differences between large and small problems

We first identified brain regions showing response differences associated with arithmetic
problem size by contrasting the neural correlates of large and small problems in the pooled group
of males and females. The problem size effects on brain activation are presented in Figure 2.
First, across all participants, relative to small problems, large problems exhibited a widespread
fronto-parietal network of regions, including bilateral MFG extending to adjacent IFG and medial
frontal gyrus in the prefrontal cortex (PFC), bilateral IPS in the PPC. Additional clusters were
also found in the ventrotemporal occipital cortex (VTOC), including bilateral lingual gyrus (LG),
fusiform gyrus (FG), and calcarine. In contrast to large problems, small problems were activated
more in the bilateral supramarginal gyrus (SMG) and the left AG in the PPC, medial prefrontal
cortex, and posterior cingulate cortex, and bilateral superior temporal gyrus (STG) (Table 1
shows the detailed results of the peak coordinates in each cluster). Simple main effect results
suggested that the problem size effect is more salient in females, whereas males yielded a less

profound pattern across these distributed regions (Figure 2 and Table 2).
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Figure 2. Brain regions that showed different activation levels between large- and small-
size problem solving across overall participants (upper panel), in females (middle panel), and in
males (lower panel). Activations in fronto-parietal regions including MFG (middle frontal gyrus),
IFG (inferior frontal gyrus) and IPS (intraparietal sulcus) were greater in large problems
compared to small problems. On the other hand, activations in AG (angular gyrus), SMG
(supramarginal gyrus) and STG (superior temporal gyrus) were higher in small problems than
large problems.

Table 2 Sex differences of the problem size effect

Region Corrected # of Peak T-  Peak MNI
DFWE voxels score coordinates
X y z

Problem size effects (females)

Large > Small

R lingual gyrus <0.001 13987 9.48 20 -82 -6
L inferior frontal gyrus <0.001 3847 6.55 38 2 34
R intraparietal sulcus <0.001 1948 6.69 34 48 44
L anterior cingulate gyrus <0.001 1583 6.47 -8 18 46
R middle frontal gyrus <0.001 710 4.94 50 38 22

Small > Large
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R superior temporal gyrus 0.017 378 5.28 62 -56 10
R medial frontal gyrus 0.022 359 4.04 4 48 -8
R supramarginal gyrus 0.032 333 4.81 62 -48 36
Problem size effects (males)

Large > Small

L middle frontal gyrus <0.001 894 5.25 -48 30 24
L precuneus <0.001 836 4.94 -26  -68 38
R lingual gyrus <0.001 765 7.86 16 -82  -10
L lingual gyrus 0.001 596 5.85 -14  -88 -10
R intraparietal sulcus 0.001 566 5.16 52 30 54
Small > Large

R supramarginal gyrus <0.001 936 6.27 58 32 24
R posterior cingulate cortex <0.001 864 4.81 8 32 44
L supramarginal gyrus 0.001 530 4.81 50 26 14
R middle frontal gyrus 0.011 375 4.61 40 26 38

3.2.2. Females exhibited larger problem size effects than males

To investigate whether male and female show differences when processing large and small
problems, we examined brain areas that showed problem size by sex interaction. This analysis
revealed significant differences in the left MFG, IPS, and the right dACC (Figure 3; Table 3
reveals detailed results of the peak coordinates in each cluster). Further analysis of the averaged
beta weights of each significant cluster revealed that the interaction effect was driven by the
problem complexity cost (Complex-Simple) being more prominent in females (Figure 3).
Specifically, females showed stronger activations for complex then simple problems in the left
MFG (¢35 = 4.006, p <0.001, 95% CI=1[0.120, 0.366], d = 0.677), the left IPS (¢35) = 6.600, p
<0.001, 95% CI=[0.371, 0.701], d = 1.116), and the right dACC (#3s) = 4.332, p <0.001, 95%
CI = [0.098, 0.272], d = 0.732). Males, on the contrary, showed a minimal or null effect of
problem complexity in these brain regions (left MFG (#34) =-2.033, p = 0.05, 95% CI =[-0.228,
-0.001], d = 0.349); the left IPS (¢34) = 1.699, p = 0.099, 95% CI = [-0.022, 0.246], d = 0.291),
and the right dACC(#34) = -1.713, p = 0.096, 95% CI =[-0.124, 0.011], d = 0.294)).
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Figure 3. Statistical maps illustrating regions activated for sex and problem size interaction
effects. A problem size effect was evident in females (F), with greater activation in large problems
than small problems, whereas a problem size effect was negligible in males (M). Error bars
represent standard errors. *p < .05, ***p < .001. Abbreviations: L MFG (left middle frontal
gyrus), L IPS (left intraparietal sulcus), R dACC (right dorsal anterior cingulate cortex).

Table 3 Sex differences in brain activation in the mental arithmetic task

Region Corrected # of Peak T- Peak MNI
PrwE voxels score coordinates
X y z

Problem size effects

Females > Males
R dorsal anterior cingulate

0.006 447 4.06 6 40 32
gyrus
L intraparietal sulcus 0.006 444 4.33 -14  -70 40
L middle frontal gyrus 0.039 314 4.29 -44 48 8

Males > Females
No significant clusters
R, right. L, left.

3.2.3. Brain responses in fronto-parietal circuits predict sex/gender difference

We then examined whether brain activity that showed problem size effects could accurately
distinguish females and males using a logistic regression function. The averaged beta values of
large and small problem size for each participant were extracted from the six ROIs defined by
meta-analysis to avoid inflated correlations, as introduced in section 2.3.4. The selected ROIs

were highly overlapped with the activation level maps generated from the one-sample t-test on
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the contrast of Complex minus Simple problems on the data from pooled males and females
together (Figure 4). In order to investigate whether the regional brain response profile could
predict the sex/gender label, we conducted a binary logistic regression classifier to categorize
males and females using the estimated activation level difference between large and small
problems extracted from the aforementioned unbiased ROIs. The results showed that among the
six ROIs, the logistic coefficients were significant in the left insula (beta(f) = 6.089, p = 0.011,
odds ratio =441.099, 95% CI=[1.708, 11.167]), the left MFG (beta(f) = 2.677, p = 0.006, odds
ratio = 14.541, 95% CI =[0.918, 4.761]), and the left IPS (beta(f) =2.094, p = 0.005, odds ratio
=8.116, 95% CI=[0.723, 3.688]) (Figure 4). These results indicated that female participants had
a higher probability of exhibiting greater degrees of activation level difference between large and
small problems within the left insula, MFG, as well as IPS (Figure 5).

Rostral
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Caudal

IPS IPS

Figure 4. Brain regions that showed overlapping between the whole brain analysis of problem
size effect and the selected ROIs based on meta-analysis results. The simple main effect of

problem size (red), selected ROIs (green), and regions of overlap (yellow) on the standard
space. Coordinates are in MNI space (mm).
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Figure 5. Logistic regression results of ROIs that brain activity-based classification

successfully classified participants’ sex. Within each frame, the top-right bar plots revealed that
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problem size effects were only observed in females (F) over left insula and left middle frontal
gyrus (L MFG) while the effects were found in both females and males (M) over left intraparietal
sulcus (L IPS). The bottom-right sigmoid function plots of each frame indicated that participants'
sex (y axis) could be classifiable based on brain activation level differences between large and

small problems (x axis).

In an attempt to build a logistic model that best describes the sex differences in problem
complexity, the stepwise forward method was then performed with the variables based on the
estimated activation level difference between large and small problems extracted from the
selected ROIs. Of the six aforementioned ROIs, the optimal subset of variables related to sex
label discrimination using the forward stepwise selection method resulted in five ROIs — right
IPS, left IPS, left IFG, left MFG, and left insula. The AIC of the final model consisting of the
five ROIs is 77.467, with the logistic coefficients for right IPS (beta(f) = -3.682, Wald »° = 10.4),
left IPS (beta() = 6.228, Wald j° = 8.7), left MFG (beta() = 3.482, Wald 5’ = 4.9), left IFG
(beta(p) = -2.537, Wald y° = 4.2) showed statistically significant at the 0.05 level (Figure 6A).
All estimation parameters are reported in Table 4. The overall model classification accuracy was
then evaluated using a three-step cross-validation procedure, summarized in Figure 6. Figure 6B
illustrated the machine learning method's analyzing strategy and the model evaluation
procedures. First, the entire data set of the five-variant logistic regression model was randomly
split into the training subset (70%) and the testing subset (30%). Second, a stratified 10-fold
repeated cross-validation procedure was computed on the training data, resulting in an average
accuracy of 71% (kappa = 0.41). Figure 5C shows the distribution of the performance measure
reported by stratified 10-fold repeated cross-validation. Finally, the resulting model was
evaluated in the remaining test subset. The classification accuracy of multiple logistic regression
model is 81% (95% CI = [58% - 95%], kappa = 0.63), the sensitivity/specificity of the model is
0.67/1, resulting in an AUC of 0.91. The ROC curve and the AUC derived from the test set were

summarized in Figure 6D.

Table 4 Multiple logistic regression model results for predicting biological sex during simple
and complex arithmetic task

term )i S.E. Wald 2 p. value OR 95% CI OR
(df=1)

Intercept -0.69 0.45 2.3 0.128 0.50 -1.61-0.18
R IPS -3.68 1.14 10.4 0.012 0.03 -6.20 —-1.67
L IPS 6.23 2.11 8.7 0.003 506.68 2.50 - 10.88
L MFG 3.48 1.58 4.9 0.027 32.53 0.68 - 6.94

L IFG -2.54 1.24 4.2 0.040 0.08 -5.13-0.21
L Insula 4.88 3.52 1.9 0.165 132.22 -1.75-12.32
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R, right. L, left. IPS, intraparietal sulcus. MFG, middle frontal gyrus. IFG, inferior frontal
gyrus. Significant variables are in bold.
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Figure 6. Multiple logistic regression results. (A) Final multiple logistic model explaining sex
differences in problem complexity by looking at the estimated activation levels between large
and small problems extracted from the selected ROIs. In the final five-variant model, predictors
of right IPS, left IPS, left MFG, and left IFG contributed significantly to female/male
differentiation during the arithmetic task. (B) Flow-chart of multiple logistic regression model
evaluation. In the original dataset, the prediction variables were beta value differences in five
ROlIs: right IPS, left IPS, left IFG, left MFG, and left insula. First, we shuffled and split up the
original dataset of the multiple logistic regression models into training (70%) and test (30%)
subsets. Nest, we performed a 10-fold repeated cross-validation procedure on the training data to
generate an average output model performance over the repeated 10 folds. Last, the remaining
test data was used to evaluate the output model. (C) The classification accuracy performances
of the training set were reported by 10-fold repeated cross-validation. (D) Receiver operating
characteristic curve (ROC) and overall model performances for prediction of sex labels on the

test set. AUC indicates area under the curve.

3.2.4. Sex/gender effect on neuroanatomical structure

Finally, we investigated whether sex/gender differences in functional brain activations
were elicited from changes in fundamental neuroanatomical differences. We focused on gray
matter volume in the three fronto-parietal regions identified in the functional activation analysis
which showed sex related problem size effect — dACC, left IPS, and left MFG. After
controlling for the total intracranial volumes, all three regions showed sex-related differences in

regional volume, with males showed larger cortical volume in the above regions (Figure 7)
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(dACC, p=0.02; left IPS, p <0.001; left MFG, p = 0.01). These results showed that the
increase in female fronto-parietal activation is not related to changes in the underlying

neuroanatomy.
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Figure 7. Regional volumes in the functional clusters within the fronto-parietal regions showed
sex-related activation differences. Sex-related differences in gray matter volume were observed
in the dACC, left IPS, and left MFG. Male participants showed larger cortical volume in these

three regions.

4. Discussion

In this study, we investigate whether the problem complexity of the arithmetic task
modulates brain responses differently in females and males. We directly manipulated problem
complexity by varying problem size, aiming to reveal the activity profiles of crucial math
processing in both sexes. As far as we are aware, our findings are the first to examine the problem
size effect in each sex/gender, as it has strong potential to represent the effectiveness of strategies
used by each individual (Cho et al., 2011). As predicted, we did not observe any behavioral
performance differences between females and males. However, the sex-/gender-related effects
on neural responses varied depending on problem complexity. This interaction is manifested by
females showing greater fronto-parietal activation for complex problems than males. More
specifically, sex effects on problem size were observed in left MFG, IPS, and right dACC, with
females exhibiting greater activations in large problems than in small problems. Crucially, the
machine learning algorithm revealed that the fronto-parietal signal levels during arithmetic tasks
could successfully discriminate males from female participants. These findings collectively
suggest that the brain responses while performing mathematical tasks are different in each sex,

particularly in the fronto-parietal circuits.
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4.1 Males and females showed similar behavior performance

In line with earlier behavior assessment (Hyde, 2014) and task-dependent neuroimaging
studies (Keller & Menon, 2009; Pletzer, 2016), our results showed no differences between
females and males in either accuracy or reaction times. Note that we implemented the
presentation duration of the stimuli long as 3-second not only to ensure participants had enough
time to obtain each problem solution but also to avoid motor responses contaminating the neural
responses toward responding to numerical problems, as the supplementary motor area (SMA) is
consistently activated during arithmetic problem solving (Menon et al., 2014). Participants were
instructed to make a verification response immediately after the problem offset. Therefore, the
behavioral results may not be valid for indexing the actual time to respond. Nevertheless, our
results still inherent conventional problem size effect in the measurements of accuracy, response
latencies, and brain response profiles (De Smedt et al., 2011; Stanescu-Cosson et al., 2000),
suggesting that the task design has sufficient loading to differentiate the processes between
distinct conditions even when the performance reaches high as ceilings. The current task design
is thus sensitive enough to provide behavior-independent evidence of examination of brain

functional organization.

4.2 Problem size effect in fronto-parietal circuits is more salient in females

The key finding of the current study is that the brain functions differently to problem
complexity between females and males in the left MFG, left IPS, and dACC. Within these regions,
females exhibited robust problem size effects, whereas males displayed negligible effects. When
managing math problem solving, these three regions are activated as part of the fronto-parietal
arithmetic circuits. Functional imaging studies have identified the contributions of these nodes
to mathematical cognition. For instance, IPS has been identified as playing a crucial role in
quantity representation (Arsalidou & Taylor, 2011; Dehaene et al., 2003) and has been suggested
to reflect the use of quantity-based procedure strategies in mathematics (Stanescu-Cosson et al.,
2000). Brain activations are typically increased for large compared to small problems in IPS (De
Smedt et al., 2011; Polspoel et al., 2019; Tiberghien et al., 2019). On the other hand, MFG has
been associated with complex and effortful tasks involving quantity manipulation (Chang et al.,
2015; Menon et al., 2000; Wu et al., 2009). Additionally, ACC coupling with insula constitutes
the salience network, which serves as a major causal hub in complex problem solving, functions
as integrating and directing salient stimuli and initiating control signals (Menon, 2015b). Overall,
these findings suggested that females recruited greater neural resources than males during
mathematical problem solving, even when solving simple math problems.

As suspected, one possibility of the sex/gender differences in brain response profiles can be
attributed to the distinct problem solving strategies used by each sex/gender (Bailey et al., 2012;
Gallagher et al., 2000; Quinn & Spencer, 2001; Zhu, 2007). Problems solved by procedural
strategies are usually associated with strong activations within the fronto-insular-parietal circuits,
including the bilateral IPS, MFG, insula, and ACC (Grabner et al., 2009; Sokolowski et al., 2022).
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Such finding is in accordance with several behavioral reports of sex/gender differences in
arithmetic problem solving strategies. Bailey and colleagues found that across the entire
elementary school stage, boys tend to solve simple addition problems more often than girls
(Bailey et al., 2012; Carr & Davis, 2001). Carr and colleagues found that girls retrieve less, but
used more manipulative strategies than boys (Carr & Davis, 2001). Bailey interpreted the
sex/gender difference in problem solving strategy as a product of personalities. In particular,
males tend to be more competitive and risk-taking, whereas females are more risk-averse
(Azanova et al., 2021; Bailey et al., 2012). In support of this claim, Quinn and Spencer (2001)
found that females are more likely to choose an error-avoiding strategy rather than a speedy
manner. Our results are in line with the previous observations and provide the biological bases
of the sex/gender differences in the problem solving strategies.

Another possibility can attribute sex/gender differences in the attitude toward mathematics
(D1 Martino & Zan, 2011). Negative emotional reactions — the so-called math anxiety — can be
elicited when dealing with math-related situations (Ashcraft & Ridley, 2005). Even when solving
simple arithmetic problems, it can be triggered, especially during timed conditions (Caviola et
al., 2017) and when tasks increase in complexity (Ashcraft & Krause, 2007). Negative
correlations between math anxiety and math achievement have also been reported in a wide range
of students (Hembree, 1990). Even though girls generally perform equivalently well with boys
in mathematical achievement, females are notoriously high in self-report math anxiety (Devine
et al., 2012; Else-Quest et al., 2010; Ferguson et al., 2015; Hembree, 1990; Lau et al., 2022;
Maloney et al., 2012) that can likely be attributed to social-cultural or emotional factors (Beilock
etal., 2007; Bieg et al., 2015). The sex-specific math anxiety profile remained even when general
anxiety was controlled (Devine et al., 2012; Goetz et al., 2013). Math anxiety is also often
comorbid with limited working memory (Ashcraft & Kirk, 2001; Ashcraft & Krause, 2007,
Ramirez et al., 2013). One empirical example provided by Ashcraft and Kirk (2001) reported that
highly math-anxious college students were less accurate in performing addition problems with
carry operation only when implementing a secondary task that required a high working memory
load. Consequently, the impact of math anxiety on learning can possibly be due to the disturbance
of working memory strategies while performing mathematical tasks. Consistently, highly math-
anxious participants showed more enhanced engagement of the fronto-parietal cortices, including
the IPS and MFG (Supekar et al., 2015). Therefore, it is possibly the exceedingly high math
anxiety that up-regulates fronto-parietal engagement in females during the timed calculation task.
This interpretation, however, is admittedly speculative. To confirm the hypothesis, further direct
assessments on the relationship between math anxiety level and brain response profiles of each

sex/gender are still needed.
4.3 discrepancies with previous studies

Our current results contradict other fMRI studies that have probed the larger task effect on

males rather than females (Keller & Menon, 2009; Pletzer, 2016). The discrepancies are most
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likely resulted from the varied task design and sampling variance. In the study conducted by
Keller and Menon (Keller & Menon, 2009), a 3-operand mixed operation task was implemented
and compared with a number identification task, resulting in greater dorsal and ventral-stream
activations in males. The multi-step and multi-operation calculation task can consume more
working memory load and require multi-strategy engagement, making it difficult to disentangle
sex effect resulted from problem complexity or problem operation, In another study, Pletzer
(Pletzer, 2016) compared two-digit subtraction with single-digit multiplication, demonstrating a
dissociated activation map in males. Given that decomposition and transformation strategies are
frequently reported in solving multi-digit subtraction with borrowing (LeFevre et al., 2006) , it
may be necessary to use a combination of strategies and to engage higher order of attention.
Moreover, it is worth noting that the problem size is much larger in their subtraction task than
ours, and the operation effects may be confounded with the problem size effects. Given that both
the operations and problem sizes are distinct from Keller & Menon (2009) and Pletzer (2016) as
well as our studies, it is challenging to directly generalize the results.

Should operation and problem size confound with the sex/gender effect in brain response
profiles, more extensive investigations are needed. Most studies did not directly compare the
effect of problem size between sexes/genders on the brain activation profiles. Instead, problem
size measured varies across studies with distinct indices and operations (Campbell & Xue, 2001;
Grabner et al., 2007; Stanescu-Cosson et al., 2000). Our study intended to tackle this issue by
systematically manipulating problem size, and provide a genuine effect of problem complexity

in interpreting sex/gender differences in the brain response profiles.

4.4 Implications for using neuroimaging studies to understand sex/gender difference

The current findings highlight that the predictions obtained from behavioral performance
may not always be appropriate to characterize brain configuration. This is illustrated by females
and males engaging distinct brain response profiles even when their elicited behavioral
performances remained the same. Insomuch of this assumption, it can be doubted that the
previous observations of null results on sex/gender differences are likely underestimated.
Behavioral assessments may not always secure such a level of cognitive processes. As a result,
neuroimaging facilities, in contrast, have a strong potential to provide useful knowledge that is
unseen in behavioral outcomes alone. Therefore, it is of crucial importance to provide unique
perspectives using state-of-the-art neuroimaging techniques to understand biological sex
differences in the human brain.

In view of our findings, it should be noted that males and females engage different response
profiles of neural resources that can be influenced by problem solving strategies and affective
factors to maintain parallel performance, indicating that differences in neural resource
recruitment can be regulated by strategies and the consequence of other psychosocial factors
(Taddei et al., 2022). These results suggested that the underrepresentation of females in math-
related fields is more likely due to being blocked by psychological traits rather than inability. We
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propose that the strategy of supporting female students in their personal choice of math-related
fields should likely focus on remediating these mental obstacles rather than providing prolonged
instructions over the school mathematical materials. Should instructional practices be

emphasizing elevating positive math attitude and more efficient strategies.

4.4 Conclusion

Over the past decades, cognitive and neural imaging studies have gained considerable
insight into uncovering sex/gender differences in the mechanisms of learning. This work has
led to advances in exploring the biological underpinnings of individual differences. However,
direct manipulation of problem types during mathematical problem solving had not been
systematically investigated. Our study emphasizes the importance of a linear task design in
probing brain response profiles. Our findings revealed that, for the first time, problem
complexity effects were markedly more prominent for females than males. On the other hand,
using machine learning approach, we demonstrated that the fMRI signal profiles of the
complexity are discriminative of the individual’s biological sex label. These results suggested
that females and males take different but equivalently successful neural pathways to
accomplish mathematical achievement. Further questions are raised, such as the effect of
problem type, strategy selection, and the developmental progression. Future studies
investigating potential neural mechanisms of when and how certain factors influence children's
developing mathematical knowledge would improve the quality of school instruction and

methods of teaching mathematics.
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while they performed an arithmetic task comprised by large and small problems in the MRI scanner. All participants were categorized as higher and lower IC
groups by median split using f a flanker task admini outside the MRI scanner. Voxelwise three-way ANOVA with problem size (large,
small) as a with-subject factor and age (children, as well as IC (high, low) as between-subject factors were examined across the whole brain. The
results revealed three-way interaction, with children with higher IC show stronger activations in the frontal-parietal regions, including middle frontal gyrus and
intraparietal sulcus, compared to those with lower IC. In contrast, with higher IC show i in default mode network, including

precuneus, angular gyrus, and ventromedial prefrontal cortex, than the lower IC group. These resuits suggested that the cognitive and neural mechanisms of

inhibitory control underlying arithmetic learning develops across essential school stages. Our study therefore provides insights into uncovering the biological
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Abstract
Inhibitory control (IC), the capacity to suppress an inappropriate prepotent response, plays a crucial role in
building foundational cognitive skills, especially during the early stage of development. Although
neuroimaging studies have provided abundant evidence that brain responses associated with inhibitory control
are consistently implicated in children's mathematical learning, how IC develops across school stage into
adolescence is still poorly understood. In this study we investigate this issue using fMRI methods. Brain
responses of fifty-two children (ages 7-13) and twenty-two adolescents (ages 13-18) were acquired while they
performed an arithmetic task comprised by large and small problems in the MRI scanner. All participants were
categorized as higher and lower IC groups by median split using the performance of a flanker task
administered outside the MRI scanner. Voxel-wise three-way ANOVA with problem size (large, small) as a
with-subject factor and age (children, adolescents) as well as IC (high, low) as between-subject factors were
examined across the whole brain. The results revealed three-way interaction, with children with higher IC
show stronger activations in the frontal-parietal regions, including middle frontal gyrus and intraparietal
sulcus, compared to those with lower IC. In contrast, adolescents with higher IC show more deactivations in
default mode network, including precuneus, angular gyrus, and ventromedial prefrontal cortex, than the lower
IC group. These results suggested that the cognitive and neural mechanisms of inhibitory control underlying
arithmetic learning develops across essential school stages. Our study therefore provides insights into

uncovering the biological underpinnings of the maturation of cognitive skill acquisition.
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Age-related differences of inhibitory control engagement underlying arithmetic abilities
between children and adolescents

Xin-Yu CHEN!, Chan-Tat NG!, Ting-Ting CHANG'?

QB2

NATIONAL CHENGCHI UNIVERSITY

Background

« Previous studies have showed that brain responses
associated with inhibitory control (IC) are consistently
implicated in children’s math learning suwma, & Gemerot, 2016) .

« IC is particularly crucial for learning and school
attainments.

« How IC develops across elementary school into high
school stage is still poorly understood.

« Here we investigate this issue by comparing elementary

school and high school students using fMRI.

Methods & Results

« Participants: 52 children from grade 1 to grade 6
(ages 7-13) and 22 adolescents from junior and
senior high school (ages 13-18).

A. Flanker task (out-of-scanner)

— respond

i

ocutral

2000 ms

1000 ms

Figure 1. Procedure of Flanker task. Participants were asked to

identify the direction of the central target.

Methods & Results

B. Arithmetic task (in-scanner)

’ | respond

8+7

operands > 25

Figure 2. Procedure of Arithmetic task.

Participants calculated the presented problem and
verified whether the answer corresponded to the

following number.
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Figure 3. Accuracy of the in-scanner arithmetic task.
*kEp <001,

Children

Adolescents

High I

Figure 4. Brain regions that showed problem size effect in children/adolescents and high/low inhibitory control (IC).
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All participants were categorized as higher and lower IC groups by median split using the performance of a flanker task.

Department of Psychology, National Chengchi University, Taipei City, Taiwan; 2Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei City, Taiwan.

Conclusion

« Problem size effect showed in both high and low IC
participants in children’s group, but not in
adolescents’ group.

« Children with higher IC showed stronger problem
size effect in frontal-parietal regions including MFG
and IPS as well as ventrotemporal occipital cortex
than those with lower IC.

« Adolescents with higher IC showed more
deactivations in the DMN, which consisted of
precuneus, AG, and vimPFC.

o Our study suggested that the cognitive and neural
mechanisms of inhibitory control underlying
arithmetic learning developed across essential
school stages.

ﬁ
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